Ignat 2 Report post Posted June 4, 2007 И так, пойдем обедать. Сегодня в 13:00, встречаемся на углу улиц Sokolovska и Kollarova. Ок. Quote Share this post Link to post Share on other sites
KOTRPA 0 Report post Posted June 4, 2007 Ужос! Стока людей стараются программировать и никто не хочет считать! Между прочим, дискра - обязательный предмет у каждого будущего математика и программиста на первом курсе! :-) Учить дискретку на первом курсе -- маразм! Только после полного курса матана, аналитик, теории вероятности & etc. Иначе будет непонятно что за всем этим бередом стоит. Quote Share this post Link to post Share on other sites
Ignat 2 Report post Posted June 4, 2007 А что такое "аналитик"? Quote Share this post Link to post Share on other sites
Stevendall 0 Report post Posted June 4, 2007 "аналитик"Меня в школе всегда удивляло, почему такой простой школьный предмет алгебра имеет такое непростое название "Алгебра и начала анализа". А понял я это уже через фиг знает когда после экзаменов по аналитической геометрии, анализа бесконечных рядов и разрывов функций первого и второго рода и т.д. В связи с темой, пересмотрел учебник по комбинаторике... Нет там прямой формулы для расчёта топиковой задачи. Тогда не понял, кто-то тут намекая на дискриптиву хочет сказать, что задача не по комбинаторике? Quote Share this post Link to post Share on other sites
Ignat 2 Report post Posted June 4, 2007 Вот обещанное точное решение ШАГ 1. Рассмотрим следующую задачу: (См. Виленкин, Комбинаторика, стр. 63, ссылка где скачать книгу в посте выше) Задача о львах и тиграх Укротитель хищных зверей хочет вывести на арену цирка 5 львов и 4 тигров; при этом нельзя чтобы 2 тигра шли друг за другом. Сколькими способами он может расположить зверей. Решение смотрим в книжке (очень простое, но лень набирать) Там же смотрим следующую общую формулу, для n львов и k тигров (k меньше либо равно n+1). Формула : n!(n+1)!/(n-k+1)! (для тех, кто не помнит, что такое n! (n-факториал) = 1*2*3*4*....(n-2)*(n-1)*n) Сформулируем это в виде теоремы Теорема (о львах и тиграх) Укротитель хищных зверей хочет вывести на арену цирка n львов и k тигров (k меньше либо равно n+1); при этом нельзя чтобы 2 тигра шли друг за другом. Тогда это можно сделать n!(n+1)!/(n-k+1)! способами. ШАГ 2. Пусть цифры 1,2,3,4 обозначают 4 короля. Рассмотрим как эти короли могут располагаться относительно друг друга, когда карты выложены в ряд с 1 по 36. Может оказаться, что некоторые короли будут рядом, например 23, или все будут рядом 3241 или никакие два не будут рядом и.т.д. Пусть –(минус) обозначает какое-то количество карт (большее чем 0), среди которых нет королей. Тогда короли могут встретиться в полосе из 36 карт Следующими способами Способ 1K ( никакие два короля не будут рядом ) 1-2-3-4. Способ 2K (короли лягут парами,всего 12 вариантов) 12-34 13-24 14-23 21-34 13-42 14-32 12-43 31-24 41-23 21-43 31-42 41-32 Способ 3K (два короля вместе и два отдельно, всего 12 вариантов) 12-3-4 13-2-4 14-2-3 21-3-4 31-2-4 41-2-3 23-1-4 24-1-3 34-1-2 32-1-4 42-1-3 43-1-2 Способ 4K (три вместе и один отдельно,всего 24 варианта) 123-4 124-3 134-2 234-1 132-4 ... ... ... 213-4 ... ... ... 231-4 ... ... ... 312-4 ... ... ... 321-4 ... ... ... Способ 5K (четыре вместе, всего 4!=24 варианта) 1234 .... .... ШАГ 3. Те же 5 способов расположения возможны и для тузов. По аналогии назовем их Способ 1Т,...Способ 5Т. ШАГ 4.(Главный) А теперь мы подсчитаем количество способов, когда тузы не лежат рядом с королями (хотя тузы могут лежать рядом с тузами, а короли рядом с королями). Например, пусть короли лежат как в способе 1К (то есть никакие 2 короля не лежат рядом), а тузы лежат как в способе 5Т(то есть 4 туза подряд), но в фиксированном порядке (например, туз пиковый,туз трефовый, туз бубновый и туз червовый). Для того чтобы найти количество способов, которыми можно разложить таких королей и тузов, применим теорему о львах и тиграх В нашем случае Тигры это 4 короля + 1 блок из подряд идущих 4-х тузов, то есть всего 5 тигров. Львы --- это остальные карты 36-4К-4Т=28. Таким образом получаем 28!*29!/(28-5+1)!=28!*29!/24! способов расположения для фиксированной последовательности тузов в своем блоке. Но тузы внутри своего блока мы можем переставить 4!=24 способами. Поэтому Способ 1K and Способ 5Т нам даст 28!*29!/24!*24!=28!*29! способов. Далее, каждому из 5 способов 1K,..,5K соответствует 5 способов 1T,..,5T (то есть всего 25 способов). Подсчет соответствующих вариантов удобно записать в виде таблицы ------------------------------------------------ 1 столбец N способа 2 столбец количество вариантов внутри способа 3 столбец N способа 4 столбец количество вариантов внутри способа 5 столбец общее количество тигров ------------------------------------------------- Способ 1К 1 Способ 1Т 1 4+4=8 Способ 2К 12 Способ 1Т 1 2+4=6 Способ 3К 12 Способ 1Т 1 3+4=7 Способ 4К 24 Способ 1Т 1 2+4=6 Способ 5К 24 Способ 1Т 1 1+4=5 Способ 1К 1 Способ 2Т 12 4+2=6 Способ 2К 12 Способ 2Т 12 2+2=4 Способ 3К 12 Способ 2Т 12 3+2=5 Способ 4К 24 Способ 2Т 12 2+2=4 Способ 5К 24 Способ 2Т 12 1+2=3 Способ 1К 1 Способ 3Т 12 4+3=7 Способ 2К 12 Способ 3Т 12 2+3=5 Способ 3К 12 Способ 3Т 12 3+3=6 Способ 4К 24 Способ 3Т 12 2+3=5 Способ 5К 24 Способ 3Т 12 1+3=4 Способ 1К 1 Способ 4Т 24 4+2=6 Способ 2К 12 Способ 4Т 24 2+2=4 Способ 3К 12 Способ 4Т 24 3+2=5 Способ 4К 24 Способ 4Т 24 2+2=4 Способ 5К 24 Способ 4Т 24 1+2=3 Способ 1К 1 Способ 5Т 24 4+1=5 Способ 2К 12 Способ 5Т 24 2+1=3 Способ 3К 12 Способ 5Т 24 3+1=4 Способ 4К 24 Способ 5Т 24 2+1=3 Способ 5К 24 Способ 5Т 24 1+1=2 ------------------------------------------------ Заметим, что количество львов всегда равно 28. ШАГ5. Считаем по аналогии с примером Способ 1К and Способ 5Т) Получаем(после несложных преобразований) 28!*29!*(1/21!+24/22!+216/23!+912/24!+1872/25!+1728/26!+576/27!)= 137147414927299238903756459184488448000000. Таким образом мы нашли количество всех вариантов, когда никакой король не лежит рядом с никаким тузом. Количество всех раскладов карт в ряд от 1 до 36 равно 36!(очевидно). Поэтому количество вариантов, когда какой-нибудь король лежит рядом с каким-нибудь тузом, равно 36!-полученное число, что равно 234845911862601978564242988966346752000000. Искомая вероятность, следовательно равна 234845911862601978564242988966346752000000/36!= 3293773/5217300~0.6313175397 QED. Quote Share this post Link to post Share on other sites
agata 1 Report post Posted June 5, 2007 Ignat СПАСИБО!!!!!!!!!!! Quote Share this post Link to post Share on other sites
GDV 10,453 Report post Posted June 5, 2007 Респект, Ignat. Эх, где мои 17 лет. Quote Share this post Link to post Share on other sites
Ignat 2 Report post Posted June 5, 2007 agata Не за что, просто самому стало интересно. А вообще я почти уверен, что есть общая формула для такого рода задач. Эх, где мои 17 лет. Там же, где мои 14. Quote Share this post Link to post Share on other sites
GDV 10,453 Report post Posted June 5, 2007 Нет-нет, в данном случае имелось в виду то, что слова Высоцкого удачно совпали с моим возрастом, когда я учился на физико-математическом факультете. Теперь же мне осталось только забыть, как он назывался, чтобы результат обучения стал стопроцентным. Странно, что помню, что такое факториал. Quote Share this post Link to post Share on other sites
Ignat 2 Report post Posted June 5, 2007 ... учился на физико-математическом факультете. Здорово! Quote Share this post Link to post Share on other sites
GDV 10,453 Report post Posted June 6, 2007 Да чего там здорового, коли большую часть времени я проводил в аудиториях с компами . Общался с железными мышами, Ямахами MSX и Искрами. На матан, правда, ходил. Уж очень он у меня трудно шел. Quote Share this post Link to post Share on other sites
Ignat 2 Report post Posted June 6, 2007 Искру я только видел ( дома по ней даже учебник остался), на ямахах в школе учились, а еще помню были БК0010. А вот о железных мышах я даже не слышал. Quote Share this post Link to post Share on other sites
Ignat 2 Report post Posted October 9 Не знаю почему вспомнил эту задачку из первого поста и ради интереса спросил про нее chatgpt We have 36 playing cards from 6 to ace, of four standard types. The cards are opened open one-by-one. What is the probability that some king will be next to some ace or some ace will be next to some king? На решение он потратил 1 минуту 2 секунды.Ответ совпал, но на решение было потрачено 1минута 2 секунды. 1 Quote Share this post Link to post Share on other sites
GDV 10,453 Report post Posted October 9 6 часов назад, Ignat сказал: На решение он потратил 1 минуту 2 секунды. Круто! Все совпало :). Но ничего себе привет из прошлого, однако. 18 лет прошло )) 1 Quote Share this post Link to post Share on other sites
Ignat 2 Report post Posted October 9 Удивительно, то что дан не просто ответ, а решение. 1 Quote Share this post Link to post Share on other sites